博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Tensorflow 学习三 可视化
阅读量:5131 次
发布时间:2019-06-13

本文共 8881 字,大约阅读时间需要 29 分钟。

下面是一个可视化的例子,网上还有一些其他版本的代码,在Tensorflow 2016年12月更新后需要修改才能使用。

参照这个例子,为上一篇随笔中的softmax添加了可视化(更新到上一篇)。

主要更新包括:

"tf.train.SummaryWriter": "tf.summary.FileWriter",        "tf.scalar_summary": "tf.summary.scalar",        "tf.histogram_summary": "tf.summary.histogram",        "tf.audio_summary": "tf.summary.audio",        "tf.image_summary": "tf.summary.image",        "tf.merge_summary": "tf.summary.merge",        "tf.merge_all_summaries": "tf.summary.merge_all",

 

代码来自

运行可能会报错Couldn't open CUDA library libcupti.so.8.0,需要把下面路径加到环境变量或者编译器环境。

 

LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/extras/CUPTI/lib64

 

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the 'License');# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##     http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an 'AS IS' BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.# =============================================================================="""A simple MNIST classifier which displays summaries in TensorBoard. This is an unimpressive MNIST model, but it is a good example of usingtf.name_scope to make a graph legible in the TensorBoard graph explorer, and ofnaming summary tags so that they are grouped meaningfully in TensorBoard.It demonstrates the functionality of every TensorBoard dashboard."""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport argparseimport sysimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataFLAGS = Nonedef train():  # Import data  mnist = input_data.read_data_sets(FLAGS.data_dir,                                    one_hot=True,                                    fake_data=FLAGS.fake_data)  sess = tf.InteractiveSession()  # Create a multilayer model.  # Input placeholders  with tf.name_scope('input'):    x = tf.placeholder(tf.float32, [None, 784], name='x-input')    y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')  with tf.name_scope('input_reshape'):    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])    tf.summary.image('input', image_shaped_input, 10)  # We can't initialize these variables to 0 - the network will get stuck.  def weight_variable(shape):    """Create a weight variable with appropriate initialization."""    initial = tf.truncated_normal(shape, stddev=0.1)    return tf.Variable(initial)  def bias_variable(shape):    """Create a bias variable with appropriate initialization."""    initial = tf.constant(0.1, shape=shape)    return tf.Variable(initial)  def variable_summaries(var):    """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""    with tf.name_scope('summaries'):      mean = tf.reduce_mean(var)      tf.summary.scalar('mean', mean)      with tf.name_scope('stddev'):        stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))      tf.summary.scalar('stddev', stddev)      tf.summary.scalar('max', tf.reduce_max(var))      tf.summary.scalar('min', tf.reduce_min(var))      tf.summary.histogram('histogram', var)  def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):    """Reusable code for making a simple neural net layer.    It does a matrix multiply, bias add, and then uses relu to nonlinearize.    It also sets up name scoping so that the resultant graph is easy to read,    and adds a number of summary ops.    """    # Adding a name scope ensures logical grouping of the layers in the graph.    with tf.name_scope(layer_name):      # This Variable will hold the state of the weights for the layer      with tf.name_scope('weights'):        weights = weight_variable([input_dim, output_dim])        variable_summaries(weights)      with tf.name_scope('biases'):        biases = bias_variable([output_dim])        variable_summaries(biases)      with tf.name_scope('Wx_plus_b'):        preactivate = tf.matmul(input_tensor, weights) + biases        tf.summary.histogram('pre_activations', preactivate)      activations = act(preactivate, name='activation')      tf.summary.histogram('activations', activations)      return activations  hidden1 = nn_layer(x, 784, 500, 'layer1')  with tf.name_scope('dropout'):    keep_prob = tf.placeholder(tf.float32)    tf.summary.scalar('dropout_keep_probability', keep_prob)    dropped = tf.nn.dropout(hidden1, keep_prob)  # Do not apply softmax activation yet, see below.  y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)  with tf.name_scope('cross_entropy'):    # The raw formulation of cross-entropy,    #    # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),    #                               reduction_indices=[1]))    #    # can be numerically unstable.    #    # So here we use tf.nn.softmax_cross_entropy_with_logits on the    # raw outputs of the nn_layer above, and then average across    # the batch.    diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)    with tf.name_scope('total'):      cross_entropy = tf.reduce_mean(diff)  tf.summary.scalar('cross_entropy', cross_entropy)  with tf.name_scope('train'):    train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(        cross_entropy)  with tf.name_scope('accuracy'):    with tf.name_scope('correct_prediction'):      correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))    with tf.name_scope('accuracy'):      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  tf.summary.scalar('accuracy', accuracy)  # Merge all the summaries and write them out to /tmp/mnist_logs (by default)  merged = tf.summary.merge_all()  train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)  test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')  tf.global_variables_initializer().run()  # Train the model, and also write summaries.  # Every 10th step, measure test-set accuracy, and write test summaries  # All other steps, run train_step on training data, & add training summaries  def feed_dict(train):    """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""    if train or FLAGS.fake_data:      xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)      k = FLAGS.dropout    else:      xs, ys = mnist.test.images, mnist.test.labels      k = 1.0    return {x: xs, y_: ys, keep_prob: k}  for i in range(FLAGS.max_steps):    if i % 10 == 0:  # Record summaries and test-set accuracy      summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))      test_writer.add_summary(summary, i)      print('Accuracy at step %s: %s' % (i, acc))    else:  # Record train set summaries, and train      if i % 100 == 99:  # Record execution stats        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)        run_metadata = tf.RunMetadata()        summary, _ = sess.run([merged, train_step],                              feed_dict=feed_dict(True),                              options=run_options,                              run_metadata=run_metadata)        train_writer.add_run_metadata(run_metadata, 'step%03d' % i)        train_writer.add_summary(summary, i)        print('Adding run metadata for', i)      else:  # Record a summary        summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))        train_writer.add_summary(summary, i)  train_writer.close()  test_writer.close()def main(_):  if tf.gfile.Exists(FLAGS.log_dir):    tf.gfile.DeleteRecursively(FLAGS.log_dir)  tf.gfile.MakeDirs(FLAGS.log_dir)  train()if __name__ == '__main__':  parser = argparse.ArgumentParser()  parser.add_argument('--fake_data', nargs='?', const=True, type=bool,                      default=False,                      help='If true, uses fake data for unit testing.')  parser.add_argument('--max_steps', type=int, default=500,                      help='Number of steps to run trainer.')  parser.add_argument('--learning_rate', type=float, default=0.001,                      help='Initial learning rate')  parser.add_argument('--dropout', type=float, default=0.9,                      help='Keep probability for training dropout.')  parser.add_argument('--data_dir', type=str, default='data',                      help='Directory for storing input data')  parser.add_argument('--log_dir', type=str, default='logs/mnist_with_summaries',                      help='Summaries log directory')  FLAGS, unparsed = parser.parse_known_args()  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

 

到相应目录,运行

tensorboard --logdir=mnist_with_summaries

提示You can navigate to http://127.0.1.1:6006  ,便能进入TensorBoard。

 

 

 

 

 

 

转载于:https://www.cnblogs.com/qw12/p/6246580.html

你可能感兴趣的文章
Leetcode: Invert Binary Tree
查看>>
Spring Boot 7-SpringBoot运行原理实现
查看>>
Android开发实战一 百度SDK
查看>>
jQuery-获取元素坐标
查看>>
python多线程与多进程的区别
查看>>
React.js深入学习详细解析
查看>>
HTML标签总结
查看>>
特殊权限SUID,SGID,STICKY和软硬链接
查看>>
HTML5 a标签的down属性进行图片下载
查看>>
js日期比较
查看>>
0119——UIImageView的一些属性 和 简单动画实现
查看>>
Castle ActiveRecord学习(八)事务
查看>>
for循环的break和continue
查看>>
Win32串行通信中文版(Serial Communications In Win32)
查看>>
go语言的null值问题
查看>>
mpvue——引入antv-F2图表
查看>>
[洛谷P1126] 机器人搬重物
查看>>
mysql mysqli pdo学习总结
查看>>
安装allennlp
查看>>
第四周作业:wcPro.exe
查看>>